196 research outputs found

    Making Decisions that Reduce Discriminatory Impacts

    Get PDF
    As machine learning algorithms move into realworld settings, it is crucial to ensure they are aligned with societal values. There has been much work on one aspect of this, namely the discriminatory prediction problem: How can we reduce discrimination in the predictions themselves? While an important question, solutions to this problem only apply in a restricted setting, as we have full control over the predictions. Often we care about the non-discrimination of quantities we do not have full control over. Thus, we describe another key aspect of this challenge, the discriminatory impact problem: How can we reduce discrimination arising from the real-world impact of decisions? To address this, we describe causal methods that model the relevant parts of the real-world system in which the decisions are made. Unlike previous approaches, these models not only allow us to map the causal pathway of a single decision, but also to model the effect of interference–how the impact on an individual depends on decisions made about other people. Often, the goal of decision policies is to maximize a beneficial impact overall. To reduce the discrimination of these benefits, we devise a constraint inspired by recent work in counterfactual fairness (Kusner et al., 2017), and give an efficient procedure to solve the constrained optimization problem. We demonstrate our approach with an example: how to increase students taking college entrance exams in New York City public schools

    Causal Effect Inference for Structured Treatments

    Get PDF
    We address the estimation of conditional average treatment effects (CATEs) for structured treatments (e.g., graphs, images, texts). Given a weak condition on the effect, we propose the generalized Robinson decomposition, which (i) isolates the causal estimand (reducing regularization bias), (ii) allows one to plug in arbitrary models for learning, and (iii) possesses a quasi-oracle convergence guarantee under mild assumptions. In experiments with small-world and molecular graphs we demonstrate that our approach outperforms prior work in CATE estimation

    Words are Malleable: Computing Semantic Shifts in Political and Media Discourse

    Get PDF
    Recently, researchers started to pay attention to the detection of temporal shifts in the meaning of words. However, most (if not all) of these approaches restricted their efforts to uncovering change over time, thus neglecting other valuable dimensions such as social or political variability. We propose an approach for detecting semantic shifts between different viewpoints--broadly defined as a set of texts that share a specific metadata feature, which can be a time-period, but also a social entity such as a political party. For each viewpoint, we learn a semantic space in which each word is represented as a low dimensional neural embedded vector. The challenge is to compare the meaning of a word in one space to its meaning in another space and measure the size of the semantic shifts. We compare the effectiveness of a measure based on optimal transformations between the two spaces with a measure based on the similarity of the neighbors of the word in the respective spaces. Our experiments demonstrate that the combination of these two performs best. We show that the semantic shifts not only occur over time, but also along different viewpoints in a short period of time. For evaluation, we demonstrate how this approach captures meaningful semantic shifts and can help improve other tasks such as the contrastive viewpoint summarization and ideology detection (measured as classification accuracy) in political texts. We also show that the two laws of semantic change which were empirically shown to hold for temporal shifts also hold for shifts across viewpoints. These laws state that frequent words are less likely to shift meaning while words with many senses are more likely to do so.Comment: In Proceedings of the 26th ACM International on Conference on Information and Knowledge Management (CIKM2017

    A Geometric Theory of Diblock Copolymer Phases

    Full text link
    We analyze the energetics of sphere-like micellar phases in diblock copolymers in terms of well-studied, geometric quantities for their lattices. We argue that the A15 lattice with Pm3n symmetry should be favored as the blocks become more symmetric and corroborate this through a self-consistent field theory. Because phases with columnar or bicontinuous topologies intervene, the A15 phase, though metastable, is not an equilibrium phase of symmetric diblocks. We investigate the phase diagram of branched diblocks and find thatthe A15 phase is stable.Comment: 4 pages, RevTeX, 3 eps figures include

    Coplanar k-unduloids are nondegenerate

    Full text link
    We prove each embedded, constant mean curvature (CMC) surface in Euclidean space with genus zero and finitely many coplanar ends is nondegenerate: there is no nontrivial square-integrable solution to the Jacobi equation, the linearization of the CMC condition. This implies that the moduli space of such coplanar surfaces is a real-analytic manifold and that a neighborhood of these in the full CMC moduli space is itself a manifold. Nondegeneracy further implies (infinitesimal and local) rigidity in the sense that the asymptotes map is an analytic immersion on these spaces, and also that the coplanar classifying map is an analytic diffeomorphism.Comment: 19 pages, no figures; improvements to expositio

    Neural Networks for Information Retrieval

    Get PDF
    Machine learning plays a role in many aspects of modern IR systems, and deep learning is applied in all of them. The fast pace of modern-day research has given rise to many different approaches for many different IR problems. The amount of information available can be overwhelming both for junior students and for experienced researchers looking for new research topics and directions. Additionally, it is interesting to see what key insights into IR problems the new technologies are able to give us. The aim of this full-day tutorial is to give a clear overview of current tried-and-trusted neural methods in IR and how they benefit IR research. It covers key architectures, as well as the most promising future directions.Comment: Overview of full-day tutorial at SIGIR 201

    Bogomol'nyi Decomposition for Vesicles of Arbitrary Genus

    Full text link
    We apply the Bogomol'nyi technique, which is usually invoked in the study of solitons or models with topological invariants, to the case of elastic energy of vesicles. We show that spontaneous bending contribution caused by any deformation from metastable bending shapes falls in two distinct topological sets: shapes of spherical topology and shapes of non-spherical topology experience respectively a deviatoric bending contribution a la Fischer and a mean curvature bending contribution a la Helfrich. In other words, topology may be considered to describe bending phenomena. Besides, we calculate the bending energy per genus and the bending closure energy regardless of the shape of the vesicle. As an illustration we briefly consider geometrical frustration phenomena experienced by magnetically coated vesicles.Comment: 8 pages, 1 figure; LaTeX2e + IOPar

    Fairness in Algorithmic Decision Making: An Excursion Through the Lens of Causality

    Full text link
    As virtually all aspects of our lives are increasingly impacted by algorithmic decision making systems, it is incumbent upon us as a society to ensure such systems do not become instruments of unfair discrimination on the basis of gender, race, ethnicity, religion, etc. We consider the problem of determining whether the decisions made by such systems are discriminatory, through the lens of causal models. We introduce two definitions of group fairness grounded in causality: fair on average causal effect (FACE), and fair on average causal effect on the treated (FACT). We use the Rubin-Neyman potential outcomes framework for the analysis of cause-effect relationships to robustly estimate FACE and FACT. We demonstrate the effectiveness of our proposed approach on synthetic data. Our analyses of two real-world data sets, the Adult income data set from the UCI repository (with gender as the protected attribute), and the NYC Stop and Frisk data set (with race as the protected attribute), show that the evidence of discrimination obtained by FACE and FACT, or lack thereof, is often in agreement with the findings from other studies. We further show that FACT, being somewhat more nuanced compared to FACE, can yield findings of discrimination that differ from those obtained using FACE.Comment: 7 pages, 2 figures, 2 tables.To appear in Proceedings of the International Conference on World Wide Web (WWW), 201

    Simulations of Two-Dimensional Melting on the Surface of a Sphere

    Get PDF
    We have simulated a system of classical particles confined on the surface of a sphere interacting with a repulsive r−12r^{-12} potential. The same system simulated on a plane with periodic boundary conditions has van der Waals loops in pressure-density plots which are usually interpreted as evidence for a first order melting transition, but on the sphere such loops are absent. We also investigated the structure factor and from the width of the first peak as a function of density we can show that the growth of the correlation length is consistent with KTHNY theory. This suggests that simulations of two dimensional melting phenomena are best performed on the surface of a sphere.Comment: 4 eps figure
    • …
    corecore